DSM Biotechnology Center		
Emrah Nikerel.		
Synthetic Biology: applications		

DSM - key activity areas

Health

Idvanced, cost-effective health and medical novations, and healthier food and beverages, to meet he needs of a growing and ageing global population

Nutrition

Vorld's leading producer of vitamins and nutritional ngredients meeting the growing need for more nutritious and more sustainable food and animal feed

Materials

nabling lighter, stronger, more advanced and more ustainable performance materials

DSM's 22,000 employees deliver annual net sales of about € 9 billion

The DSM Biotechnology Network

DSM biotechnology center, Delft

DSM Biotechnology Center Delft

- Established in 2009 by merging of R&D Departments of DSM Food Specialties and DSM Anti-Infectives
- Applying biotechnology in products and processes
- Approx. 500 scientists & technicians located in Delft
- Serves DSM own products in the food, pharma and white biotechnology.
- Contract development and manufacturing services (DSM BioSolutions)

Cell as a factory - examples @DSM

Examples of Products produced by Biotechnology

 Metabolites
 • vitamins, pharmaceuticals, chemicals

 (e.g. antibiotics, citric acid, arachidonic acid)
 Image: Comparison of the image: Comparison of the

BiosucciniumTM succinic acid a Versatile Building Block for Multiple Applications

<text><text>

Key concepts in Synthetic Biology

- Abstraction, Standardization: allows non-biologists to work with cells.
- Great example of initiative: parts registry database, iGEM projects.

Synthetic biology application examples: iGEM projects

- The availability of the SB technology drives not only academia, industry, but also education, small enterprises, backyard labs etc.
- iGEM: international Genetically Engineered Machine competition: Yearly, student competition students come up with their own ideas, concepts, and realize them over summer

TUDelft

Challenge the future 23

TUDelft

Analyzing alkane production with GCMS

Standard Fatty Acid 2 Carbon Starter Unit	Alternative Fatty Acid 3 Carbon Starter Unit
(<i>E. coli</i> FabH)	(B. subtilis FabH2)
O S_COA	CoA

✓ Synthesized FabH2 Gene

✓ Cloned into a 3K3-Lac Inducible Vector (aka the *FabBrick*)

Looking for C16 Alkane Production

Take home messages

- SB applications enabled by technology, is the new era, both in applications, and conceptual thinking.
- It has a quite wide area of application
- Has its origins in different areas
 - Molecular Biology, Microbiology, Metabolic Engineering
 - Nanotechnology (esp. bottom-up approaches)
 Information technology
 - Engineering
- SB is not only for biologists!!

What do I want?

- Whole-cell simulator: A software platform where we can simulate a phenotype response to changes into genotype.
- The software should be
 Able to simulate the physiology over time, optimize for a

 - Note to simulate the physiology of et time, optimize for a selected output.
 Modular, to test a variety of cellular components.
 Scalable, as our knowledge increases more modules would be incorporated.

Т	U	D	e	lf	t

A

Challenge the future 73

